► Chromatic Harmony = Chromatic alterations of diatonic chords, new chords formed on chromatically-altered scale degrees, and various modulation processes.

> Previously-studied Chr. Harmony: Secondary Dominants, Modulation, Mixture, N6th, and +6th chords.

▼ OTHER TYPES OF CHR. HARMONY INCLUDE:

- 1. Modulation through **Enharmonic Reinterpretation** (Ger+6th/V7; vii°7; Fr+6th).
 - These are a great way to modulate to unexpected and sometimes distantly-related keys.
 - The **Neapolitan** is often used as a **key area**, esp. when using Ger+6th=V7 to modulate.

2. Modulation through Chromatic Pivot Chords:

- 2.1 Diatonic/Chromatic;
- 2.2 Chromatic/Diatonic;
- 2.3 Chromatic/Chromatic.
- These let you modulate to *any* key, no matter how distant.
- Practice making up chord progressions that use each of these modulation types.
- 3. Modulations (or chords) featuring Chromatic Mediant, and Double Chromatic Mediant relationships.

MEDIANT RELATIONSHIP TYPES	; (triads whose roots are M or m 3 rd	apart)
----------------------------	--	--------

	Туре	Common Notes	M/m Mode change?	E.g.: From C to
1	DIATONIC	2	Уes	Am, Em
2	CHROMATIC	1	No	E, Eb, A, Ab
3	DOUBLE-CHROMATIC	0	Уes	Ebm (D#m), Abm (G#m)

Relevance: Mediant Modulations increasingly common in 19th c. (but type 3 is relatively rare).
 Relevance: The two chords linked by common tone in COMMON-TONE (C.T.) MODULATIONS usually exhibit CHROMATIC-MEDIANT (Chr. Med.) RELATIONSHIPS.

N. B.: C.T. MODULATIONS can link **keys** that exhibit any of the three mediant relationship types.

►Ex. I) C:
$$\mathbf{I} \Rightarrow \mathbf{III} (= \mathbf{V} / \mathbf{vi}) \Rightarrow \mathbf{vi} (= \mathbf{I} \text{ of } Am)$$

I (C E G) and V/vi (E G# B) have an "E" common tone, and exhibit CHR.-MED. RELATIONSHIP.
The KEYS of C and Am exhibit a DIATONIC-MEDIANT RELATIONSHIP.

⇒ Ex. 2) C: $\mathbf{I} \Rightarrow \mathbf{III} (=\mathbf{V}/\mathbf{vi}) \Rightarrow \mathbf{VI} (= \mathbf{I} \text{ of } A)$

• I (C E G) and \mathbf{V}/\mathbf{VI} (E G# B) have an "**E**" common tone, and exhibit CHR.-MED. RELATIONSHIP.

• The KEYS of **C** and **A** exhibit a **CHROMATIC-MEDIANT** RELATIONSHIP.

 \blacktriangleright Ex. 3) C: $\mathbf{I} \Rightarrow \mathbf{bIII} (= \mathbf{V}/\mathbf{bvi}) \Rightarrow \mathbf{bvi} (= \mathbf{I} \text{ of Abm})$

• I (C E G) and V/bvi (Eb G Bb) have a "G" common tone, and exhibit CHR.-MED. RELATIONSHIP.

• The KEYS of **C** and **Abm** exhibit a **DOUBLE-CHROMATIC** MEDIANT RELATIONSHIP.

 \mathbb{I} **bVI** became a relatively common key area in the $\mathbb{I}9^{th}$ c.

4. Linear Chromaticism I:

• ALTERED TRIADS

- 4.1 M triad with $+5^{th}$ (= Aug. triad); the raised 5^{th} resolves up by semitone to a note in the next chord: \Rightarrow Ex. 1) 1 \Rightarrow 1+ \Rightarrow 1V; or
 - ►Ex. 2) $V \Rightarrow V^+ \Rightarrow I$;
 - ► Ex. 3) [minor key:] $VI \Rightarrow VI^+ \Rightarrow ii^{\emptyset}i^{4/3} \Rightarrow V7 \Rightarrow i$.
- 4.1.1 Sometimes a seventh is added as well, esp. with V chord: $V \Rightarrow V+7 \Rightarrow I$.
 - $+5^{\text{th}}$ often in soprano, but not necessarily so. If 7th added, then +5 usually above 7th.
- 4.1.2 +5th doesn't work with minor triads (can you explain why?).

4.1.3 Not all altered triads result from linear motion. In later 19th c. harmonic practice, they were sometimes used independently of any linear context (i.e., "landed on" without concern for tendency tones). For our part-writing purposes, however, you should continue to resolve tendency tones.

4.2 M triad with °5th; the lowered 5th resolves down by semitone to a note in the next chord:

►Ex. 1) $I \Rightarrow I^{b5} \Rightarrow IV$; or ► Ex. 2) $I \Rightarrow V_{5}^{6} \Rightarrow I$ (N.B.: $V_{5}^{6} = Fr^{\circ}3$ chord of I, could also be labeled " V_{5}° ").

4.2.1 You can add a seventh, esp. to a Vb5 chord, which makes it a Fr+6 chord in inversion.

4.2.2 Adding b5 to minor chords changes them to diminished triads or a half-diminished seventh chords. This would be a form a mixture, and doesn't seem to be used much. However, it still can work:

► Ex. 1) [Major key]: $vi^{\circ}6 \Rightarrow ii^{\varnothing_7} \Rightarrow V7 \Rightarrow I$.

5. Linear Chromaticism 2:

• AUGMENTED SIXTH CHORDS are chromatically-altered dominant-function chords, and hence can be used as applied chords of any M/m triad, incl. I. (We know this already; see my "Augmented Sixths" handout.)

6. Linear Chromaticism 3:

• COMMON-TONE CHORDS.

Any two chords with a note in common tend to sound good in succession, and when one is used decoratively (i.e., non-functionally), it is called a "Common-Tone Chord." The C.T. chord usually precedes (but may be surrounded by) the main chord (see exs. below), with some notes usually acting as chromatic **neighbour tones** to the main chord. The note in common is usually the root of the **M** or **m** chord that is being decorated, but there may be more than one common tone. The C.T. chord is a form of **prolongation**.

6.1 **C.T. Ger+6th**. Play: $I \Rightarrow Ger+6/V \Rightarrow I$. If the Ger+6th/V were used **functionally**, you would expect it to move towards V, but instead, it moves right back to I, which means it is being used **decoratively**.

• A better analysis of the above progression would be: $I^{(C.T.+6)}$ I, because this shows the decorative. non-functional nature of the C.T. chord, and makes it clear that I is the "main" chord. ("C.T.Ger+6" also possible.)

• Any $+6^{th}$ nationality will work as a C.T. chord, but the Ger $+6^{th}$ or It $+6^{th}$ work best (Fr $+6^{th}$ is a bit jarring).

6.2 **C.T.** $^{\circ}7^{\text{th}}$. Play: $I \Rightarrow "vii^{\circ}7/iii" \Rightarrow I$, or $vi \Rightarrow "vii^{\circ}7/V" \Rightarrow vi$, or $I \Rightarrow "vii^{\circ}7/IV" \Rightarrow V$. [N.B. As above, better analyses for these progressions would be: $\underline{I} (C.T.^{\circ}7) \underline{I}$, $\underline{vi} (C.T.^{\circ}7) \underline{vi}$, and $\underline{I} (C.T.^{\circ}7 \text{ of...}) \underline{v}$, • Decorating **M** triads: Root of $^{\circ}7^{\text{th}}$ usually $+2^{\text{nd}} \checkmark$ from the root of the main chord: $\underline{I} \Rightarrow \text{"#ii}^{\circ}7\text{"} \Rightarrow \underline{I}$.

- Decorating **m** triads: Root of $^{\circ}7^{\text{th}}$ usually $+4^{\text{th}} \neq$ from the root of the main chord: $i \Rightarrow "\#iv^{\circ}7" \Rightarrow i$.
- 7. Altered Dominants. We've already come across two ways of altering dominants:
 - 7.1 The $+6^{\text{th}}$ family of chords (i.e., V°7), and
 - 7.2 V+.

7.3 Another way of altering dominant chords is to selectively add tertian-based notes beyond the 7^{th} , thus: $\mathbb{I} = \mathbb{V}_{\frac{9}{7}}^{9}$, (or $\mathbb{V}_{\frac{19}{7}}^{9}$), $\mathbb{V}_{\frac{11}{7}}^{11}$, and $\mathbb{V}_{\frac{13}{7}}^{13}$ (or $\mathbb{V}_{\frac{103}{7}}^{13}$).

	Chord Members	Resolution	Other	N.B.
V 9 7	root, 3 rd , 7 th , 9 th	9 th 🛰 by step ("la-so")	9 th often in sop.	9 th should be at least a 9 th from root
V 11 7	root, 5 th , 7 th , 11 th	I I th stays put ("do-do")	11 th usually in sop; like 4-3 susp. w/o the 3	II th replaces 3 rd ; never use both!
V ¹³ ₇	root, 3 rd , 7 th , 13 th	I3 th ↘ by 3 rd ("mi-do")	13 th usually in sop.; always above 7 th	Avoid "mi-mi" resolution.

NINTH, ELEVENTH, AND THIRTEENTH CHORDS

 \mathbb{W} V $\frac{b13}{7}$ and V $\frac{7}{7}$ sound exactly the same (play them/it). What's the difference?

 $\mathbb{I} V_{\tau}^{b13}$ and V_{τ}^{b9} are mixture chords and can be used in major or minor keys (although the "**b**" isn't necessary in minor, because the 6th and 2nd scale degrees to which they refer (respectively) are already lowered).

 \mathbb{I} V $\frac{11}{9}$ is just a variant of the V $\frac{11}{7}$ chord, with 3rd and 5th omitted. Pop chord symbol for this: **F/G**.

Inversions are possible but less common. You could figure out the inversion symbols and use them $(I^{st} \text{ inversion } V_{\tau}^{9} \text{ would be } V_{6}^{7}, \text{ for ex.})$ in analysis, or you could just label it " V_{τ}^{9} , $I^{st} \text{ inv.}$ "